Abstract
Luminescent materials from europium β-diketonate complex in ionic liquids (ILs) could achieve enhanced luminescence efficiencies and photostabilities. However, the question of how to provide a feasible and environmentally-friendly way to distribute these lanthanide complexes uniformly and stably within IL-based matrix remains a significant challenge. Here, a soft luminescent material from IL-mediated lyotropic liquid crystals (LLCs) doped with [Bmim][Eu(TTA)4] (Bmim = 1-butyl-3-methyl imidazolium, TTA = 2-thenoyltrifluoroacetone) has been constructed by a convenient self-assembling method. The hexagonal or lamellar LLC phases could be identified by small-angle X-ray scattering (SAXS) measurements. All LLC samples exhibited intense red luminescence upon exposure to ultraviolet radiation. The good dispersibility of the complexes in LLC matrices and their good photostability (as in ILs) was verified by steady-state luminescence spectroscopy. The isolated and unique characteristics of the microenvironment within the LLCs were noteworthy to decrease the nonradiative deactivation of the excited states, thereby allowing more efficient energy transfer and longer lifetimes than those in pure complex or IL solutions. Both the luminescent property and the stability of the LLC materials were different in different phase structures, the complexes behaving better in the lamellar phase than in the hexagonal one. The findings reported herein will not only present an easy way to design novel luminescent lanthanide β-diketonate soft materials, but also provide a useful reference to better understand the LLC phase structure effects on the luminescence properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.