Abstract

Dielectric energy storage capacitors have been explored to obtain excellent energy storage density along with high energy storage efficiency with the development of electronic devices. In this work, linear dielectric CaTi0.5Zr0.5O3 is introduced into Bi0.5Na0.5TiO3-NaNbO3 matrix to form 0–3 type composites to vary the size and conductivity of the composite grain, which lead to ultra-high breakdown electric field of 410 kV/cm and the quasi-linear hysteresis loops. Meanwhile, linear dielectric does not change the characteristic of ferroelectric, and thus composites maintain high maximum polarization of 26.4 μC/cm2. Integrating the advantages of linear dielectric and ferroelectric, an excellent recoverable energy density of 4.93 J/cm3 with an efficiency of 93.3% have been achieved in BNT-NN/7 wt%CZT ceramics. This work contributes to the development of dielectric energy storage capacitors for practical applications in pulsed power devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call