Abstract

Relaxor ferroelectrics with high energy storage performances are very attractive for modern applications in electronic devices and systems. Here, it is demonstrated that large energy densities (0.52–0.58 J/cm3) simultaneously with high efficiencies (76%–82%) and thermal stabilities (the minimum variation of efficiency < 4% from 323 K to 423 K at x = 0.04) have been achieved in the (1-x)(BCT-BMT)-xBFO lead-free relaxor ferroelectric ceramics prepared using a conventional solid-state reaction method. Large dielectric breakdown strengths and great relaxor dispersion around the dielectric peaks are responsible for the excellent energy storage performances. The energy storage performances of as-prepared ceramics at high BFO doping amount (x = 0.06 and 0.07) were deteriorated seriously due to low dielectric breakdown strengths. However, they could be greatly improved when aged, since the operable electric field was significantly enhanced from 10 kV/cm of as-prepared samples to 100 kV/cm of aged samples due to the reduced concentration of oxygen vacancies during the aging process. The excellent energy storage performances may make them attractive materials for applications in modern energy storage systems in a broad temperature range.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.