Abstract

SnO2 doped Sr0.6(Na0.5Bi0.5)0.4TiO3 (NBT-ST) ceramics were prepared by a conventional solid-state reaction method. Their phase structures, microstructures and electrical properties were characterized in details. It is found that SnO2 doping could increase the lattice parameters, density and average grain size. A suitable amount of SnO2 can improve dielectric properties, and affect the relaxor behavior of the NBT-ST matrix, thereby it can effectively reduce the energy loss and optimize the energy storage performance. Furthermore, the energy storage properties are improved with SnO2 doping. Especially, the 1 at. % SnO2 doped NBT-ST achieves a high recoverable energy density of 2.35 J/cm3, which is mainly attributed to large maximum polarization of 43.2 μC/cm2, small remnant polarization of 5.83 μC/cm2 and high breakdown strength of 180 kV/cm. Also, relatively good temperature stability for dielectric performance and excellent fatigue resistance are observed in this composition. These properties are attractive for lead-free energy storage applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call