Abstract
Dielectric ceramics have emerged as promising candidate materials for pulse capacitor system due to their exceptional thermal stability, mechanical properties, and energy storage capabilities. However, the potential of antiferroelectric ceramics based on Pb(Lu1/2Nb1/2)O3 in pulse-power systems is hindered by their high phase transition switching field and low energy storage efficiency. Herein, to address these limitations, we propose a co-doping strategy involving Ba2+ and La3+ ions to enhance the energy storage efficiency while simultaneously preserving a high energy storage density. Through the co-doping approach, we observed remarkable improvements in the performance of the ceramics. In comparison to Ba2+-doped samples, the co-doped ceramics exhibit a 33% increase in energy storage density and a 51% increase in efficiency. Our findings offer valuable insights into enhancing the energy storage characteristics of other dielectric materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.