Abstract
In this study, a thermal energy management system that combines passive cooling, heat storage and electrical energy harvest is proposed by using foam/PCM composite and thermoelectric generator (TEG), which are separately fixed upon and under the heat source as the coolers of heat source. Foam/PCM composite is also aimed to enhance the latent-heat energy storage and passive cooling. Results show that the control case of using solitary metal foam harvests the most thermoelectric energy, but has the risk of leading heat source to thermal failure. Using pristine PCM can reduce the wall temperature and prolong the thermal management time during phase change. However, the intrinsic low thermal conductivity of pure PCM still results in high temperature of heat source when the PCM is in solid stage. Attributed to high thermal conductivity and latent heat storage, the foam/PCM composite presents the lowest heat-source temperature, but at the cost of delivering the least thermoelectrical power.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.