Abstract
Integration of waste management with energy and resource recovery is being widely explored to achieve sustainability. To achieve this, sewage sludge was treated with hydrothermal carbonisation (HTC) at temperatures ranging from 180 °C–260 °C with an increment of 20 °C for three different duration of 1 h, 3 h, and 5 h. The energy and resource recovery potential of the HTC treatment was evaluated through of hydrochar (HC) and process water (PW) properties. Dehydration and decarboxylation reactions resulted in reduced H/C and O/C atomic ratios of 1.35 and 0.45 respectively in HC-260-3, exhibiting peat-like propertied. The calorific value of HC-260-5 was enhanced to 5.9 MJ/kg (increase of 25.8 %) due to the combined effect of H/C and O/C atomic ratios, increased volatile organics and fixed carbon. A maximum energy recovery efficiency of 82.44 % was realised at 240 °C for 3 h rendering it the optimal process condition to ensure energy enrichment. Thermogravimetric analysis (TGA) of HC samples indicated an enhanced combustion behaviour with an increased HTC severity. The elevated levels of volatile fatty acids (VFAs) in PW (maximum 2296 mg/L) made it viable for energy recovery in anaerobic digestion units. Additionally, the PW contains significant concentrations of N and P (2091.68 mg/L and 40.51 mg/L, respectively), indicating enhanced resource/nutrient recovery potential.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.