Abstract

Self-crystallized KTb2F7 oxy-fluoride glass ceramics (GC) were successfully manufactured via the traditional melt-quenching method. KTb2F7 nanocrystals were already formed after melt-quenching, which is beneficial to the realization of controllable glass crystallization to some degree for affording desirable nano-crystal size and activator partition. Their microstructural and optical properties were systemically investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution TEM (HRTEM), absorption spectra, photoluminescence (PL), luminescence lifetime measurements and X-ray excited luminescence (XEL). Both PL and XEL of GC samples are highly enhanced because more nanocrystals formed and grew up after heat-treatment. Our investigation suggests that transparent KTb2F7 glass ceramics may present potential application in X-ray scintillator for X-ray imaging. And our strategy that takes active ions as host may contribute to designing other oxy-fluoride GC by using active ions as host.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call