Abstract

Uniform, ultra-small-sized and well-water-dispersible LaF(3) nanoparticles doped with trivalent rare earth (RE) ions (Eu(3+) or Tb(3+)) have been synthesized by a simple, low temperature synthesis route. The nanoparticles, with sizes of about 3.2 nm (for those doped with Eu(3+)) and 3.0 nm (for those doped with Tb(3+)), are roughly spherical and monodisperse. 1,2,4,5-Benzenetetracarboxylic acid (labeled as BA) as sensitizer has been bonded to the surface of the nanoparticles, which can sensitize the emission of RE(3+) in the LaF(3) nanoparticles. The BA-LaF(3):RE(3+) (RE = Eu or Tb) nanoparticles have a broad absorption band in the UV domain, and show enhanced luminescence of RE(3+) based on an energy transfer from BA ligands to RE(3+) ions (i.e. the so-called "antenna effect"). Due to the dual protection of organic ligands (BA) and inorganic matrices (LaF(3)), BA-LaF(3):RE(3+) (RE = Eu or Tb) nanoparticles have longer excited state lifetimes than LaF(3):RE(3+) (RE = Eu or Tb) nanoparticles as well as lanthanide coordination polymers of BA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.