Abstract
Elliptic curve cryptography (ECC) is involved in many secure schemes. Such schemes involve the elliptic curve scalar operation which is particularly security sensitive. Many algorithms of this operation have been proposed including security countermeasures. This paper discusses the security issues of such algorithms when running on a device that can be physically accessed. Leveraging these issues, new simple attack schemes to recover scalar bit information are presented and a new detailed attack based on C safe-error, probability and lattice is described against an Elliptic Curve Digital Signature Algorithm (ECDSA) using the Montgomery ladder algorithm. This new attack shows that Montgomery ladder can be sensitive to C safe-errors under some conditions. Finally, new secure elliptic curve scalar operation algorithms are presented with solutions to the discussed issues and guidance for their secure implementations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.