Abstract

Titanium dioxide and Nb-doped titanium dioxide microspheres with the same size were fabricated by a simple sol-gel method, and the formation mechanism of Nb-doped titanium dioxide microspheres was proposed. Titanium dioxide and Nb-doped titanium dioxide microspheres were adopted as dispersed materials for electrorheological (ER) fluids to investigate the influence of the charge increase introduced by Nb doping on the ER activity. The results showed that Nb doping could effectively enhance the ER performance. Combining with the analysis of dielectric spectroscopy, it was found that the interface polarization of Nb-doped TiO2 ER fluid was larger than that of TiO2 ER fluid, which might be caused by more surface charges in Nb-TiO2 microspheres due to Nb(5+) doping and resulting in enhancement of electric field force and strengthening of fibrous structure. In addition, by comparing and analyzing the permittivity curves of Nb-TiO2/LDPE solid composite and Nb-TiO2/silicone-oil fluid composite, it could be concluded that the enhancement of permittivity at low frequency resulted from the increase of the order degree of dispersed particles in ER fluid rather than from the quasi-dc (QDC) behavior. Moreover, the absolute value of slope of permittivity curves (K) at 0.01 Hz could be utilized as the standard for judging the ability to maintain the chainlike structure. The relationships between polarizability of dispersed particles, dielectric spectrum, parameter K, and ER properties were discussed in detail.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.