Abstract

Two principally novel organic nonlinear optical chromophores (1 and 2) with flexible (n-hexyl group) or rigid isolated (benzyl group) group are designed and successfully synthesized. The prepared chromophores were characterized by MS, 1H-NMR and UV–Vis spectra. Their thermal stability was studied by thermal gravimetric analyzer and differential scanning calorimetry. Poled films of the chromophores doped in amorphous polycarbonate afford the maximum electro-optic tensor coefficient (r33) equal to 39 pm/V, 63 pm/V for chromophore 1 and chromophore 2, respectively at the wavelength 1,064 nm. The reason of so large differences between these two chromophores’ linear electrooptics coefficients were explained within a framework of performed quantum chemical calculations and it is crucially dependent on distances between the chromophore molecules and the polymer chains.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.