Abstract
The use of slow-wave optical propagation to promote highly efficient electrooptic modulation of light is investigated theoretically. The proposed modulators utilize a traveling wave (TW) design in which a grating integrated with a single-mode waveguide induces coupling between forward- and reverse-propagating waves. This contradirectional coupling leads to a reduction in the average optical propagation speed in the forward direction. The "slow" waveguide structures provide two features which facilitate improved modulator performance over conventional "fast" TW designs: (1) optical/microwave velocity matching in substrates with high electrooptic coefficients and dielectric constants and (2) enhancement of electrooptic phase shift due to the "dwell time" of the light in the modulation region. For the ideal case of perfect velocity matching, these two factors lead to a potential improvement of nearly an order of magnitude in electrical power dissipation over velocity-matched designs in the conventional lithium niobate (LN) substrate material. Additional orders-of-magnitude improvement in the required electrical power could result from the use of tungsten bronze substrates such as strontium barium niobate (SBN), which have such higher electrooptic coefficients than LN. The prediction of a large reduction in electrical power dissipation is confirmed by calculations for specific slow-wave designs utilizing multireflector etalons in SBN, although response speed limitations result from the fact that perfect velocity matching is not achieved.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.