Abstract

We present an investigation on the optimisation of solid-state dye sensitized solar cells (SDSCs) comprising mesoporous tin oxide photoanodes infiltrated with poly(3-hexylthiophene-2,5-diyl) (P3HT) hole conductor and sensitized with an organic dye. We chose both the SnO(2) and P3HT for their high charge carrier mobilities and conductivities, but as a result preclude conventional device configurations because of high leakage current and low shunt-resistance. To minimize the "hole leakage current" through the FTO anode, we employed a double compact layer structure, and to minimize "electron leakage current" at the silver cathode, we developed a protocol for depositing an optimal P3HT "capping layer". After optimisation of cell fabrication, the electron lifetime is increased considerably and the solar cells exhibited simulated AM1.5 full sun solar power conversion efficiencies in excess of 1%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.