Abstract

The radiation trapping effect (RTE) of electrons in the interaction of an ultra-intense laser and a near-critical-density plasma-filled gold cone is numerically investigated by using the particle-in-cell code EPOCH. It is found that, by using the cone, the threshold laser intensity for electron trapping can be significantly decreased. The trapped electrons located behind the laser front and confined near the laser axis oscillate significantly in the transverse direction and emit high-energy photons in the forward direction. With parameters optimized, a narrow photon angular distribution and a high-energy conversion efficiency from the laser to the photons can be obtained. The proposed scheme may offer possibilities to demonstrate the RTE of electrons in experiments at approachable laser intensities and serve as a novel table-top ray source.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.