Abstract

Titanium dioxide (TiO2) nanoparticles (NPs) were synthesized through solvothermal route by changing the rate of hydrolysis in the catalytic process. In order to change the hydrolysis rate, the concentration of acetic acid, as additive, was varied as 2 M, 3 M and 4 M. The synthesized NPs were examined by various physico-chemical characterization techniques. The powder X-ray diffraction (PXRD) analysis of the NPs reveals only the anatase phase of TiO2. The spherical shaped morphology of the NPs was observed in the high-resolution transmission electron microscopy (HR-TEM) analysis. The optical behaviour such as absorption, bandgap, diffuse reflectance and photoluminescence (PL) emission of the NPs were studied. The material's nature and behaviors were scrutinized and they were employed as photoanode in dye sensitized solar cell (DSSC) and as electron transport layer (ETL) in carbon-based perovskite solar cell (C-PSC). The charge transfer at the interface of the devices was studied with electrochemical impedance spectroscopy (EIS). The fabricated DSSC and C-PSC show highest power conversion efficiency (PCE) of 6.1% and 10.6%, respectively. The highest current collection was detected in C-PSC and the results are discussed in detail.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call