Abstract

The effects of Cu and Au ion implantation on the structural and electron field emission (EFE) properties of ultrananocrystalline diamond (UNCD) films were investigated. High electrical conductivity of 186 (Ω•cm)(-1) and enhanced EFE properties with low turn-on field of 4.5 V/μm and high EFE current density of 6.70 mA/cm(2) have been detected for Au-ion implanted UNCD (Au-UNCD) films that are superior to those of Cu-ion implanted UNCD (Cu-UNCD) ones. Transmission electron microscopic investigations revealed that Au-ion implantation induced a larger proportion of nanographitic phases at the grain boundaries for the Au-UNCD films in addition to the formation of uniformly distributed spherically shaped Au nanoparticles. In contrast, for Cu-UNCD films, plate-like Cu nanoparticles arranged in the row-like pattern were formed, and only a smaller proportion of nanographite phases along the grain boundaries was induced. From current imaging tunneling spectroscopy and local current-voltage curves of scanning tunneling spectroscopic measurements, it is observed that the electrons are dominantly emitted from the grain boundaries. Consequently, the presence of nanosized Au particles and the induction of abundant nanographitic phases in the grain boundaries of Au-UNCD films are believed to be the authentic factors, ensuing in high electrical conductivity and outstanding EFE properties of the films.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call