Abstract

We review recent studies on negative ion formation and studies in other areas that are relevant to the role of high-Rydberg states of H2 and H3 in hydrogen negative ion sources. Possible mechanisms for the formation of these excited states are discussed, including the formation of long-lived superexcited (core-excited) Rydberg states. Experimental evidence for negative ion formation via electron attachment to core-excited Rydberg states in a glow discharge apparatus is presented. An expression for the dissociative electron attachment rate constant for Rydberg molecules is derived based on electron capture by a Rydberg molecule due to polarization interaction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call