Abstract

Electrokinetic (EK) remediation methods can remove heavy metals from the soil, but the removal efficiency is generally low. In this paper, indoor remediation experiments of simulated copper-contaminated clay under four different types of electrolyte conditions (KCl, HAc, AC, and PASP (polyaspartic acid)) are carried out to validate the theory of an electrodynamically coupled steel slag permeability reactive wall (PRB). By comparison with EK remediation, it has been shown that the EK-PRB coupled remediation method can promote the removal of heavy metal copper in the soil, especially in the removal of reducible copper and exchangeable copper. The method can effectively avoid the increase in soil pH value and reduce the accumulation range of heavy metals while reducing the accumulation amount of heavy metals. This method has better energy utilization efficiency, and the unit energy consumption is smaller than the single electric remediation test.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.