Abstract

In recent years, sodium-ion batteries (SIBs) have been considered as one of the most promising alternatives to lithium-ion batteries (LIBs). Here, a new Na-super-ionic conductor (NASICON) cathode material NaFe2PO4(SO4)2 is successfully prepared through solid state method for SIBs. While the poor electronic conductivity of iron-based materials results in its poor rate and cycle performance. Then the electrochemical is effectively promoting via Ca2+ doping. Na0.84Ca0.08Fe2PO4(SO4)2 have achieved considerable electrochemical properties. The first discharge specific capacity is 121.6 mA h g−1 at 25 mA g−1 with the voltage platform (∼3.1 V) corresponding to Fe2+/3+. After 100 cycles, the capacity retention is 55.1 %. The excellent electrochemical performance is caused by some Na+ is substituted by Ca2+ and leading to the fast sodium kinetics, which is well proved by the powder X-ray diffraction pattern and well corresponding to the galvanostatic intermittent titration technique and cyclic voltammetry testing result (the diffusivity values are around at 10−12 cm2 s−1).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call