Abstract

Signal detection in a label-based immunoassay is performed normally when the antigen/antibody binding reaction reaches the equilibrium state during the incubation period of an assay process. Shortening the incubation period in an assay helps reduce the turnaround time and is particularly valuable for point-of-care testing, but the cost is the reduction of signal level and, possibly, measurement precision as well. This work demonstrates that the signal loss could be offset by the stronger emission of an electronically neutral ruthenium(II) complex label, Ru(2, 2′-bipyridine) (bathophenanthroline disulfonate)[4-(2, 2′-bipyridin-4-yl)butanoic acid], used in the electrochemiluminescence (ECL) immunoassay. Combined with the uniquely well-established flow-through washing process in the automated ECL analyzers and the precise control over liquid handling, the assays performed with a 5-minute incubation period showed the same signal level and measurement precision as those of conventional ECL assays. Additionally, the absence of biotin and streptavidin components in the reagent formulation avoids the biotin-streptavidin interaction during assay incubation and fundamentally eliminates the interference of biotin, especially when used in some high-dose therapies. The results obtained from the procalcitonin prototype kit and the supporting evidence from other preliminary reagents (for SARS-CoV-2 N protein and troponin T) are general. The nonequilibrium detection, along with the downsized instrument design, makes the enhanced ECL (EECL) technology a fast high-performance POCT platform that provides the same high-quality data as those generated from the widely deployed [Ru(bpy)3]2+based laboratorial ECL systems.The anticipated regulatory approval and follow-up clinical implementation will beasignificant stride in the decade-long pursuit of novel ECL labels.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call