Abstract

Membrane technologies are effective for treating leachate, but they generate leachate concentrates (LCs), which contain elevated humic acids (HAs) and metals. LCs are very challenging and expensive to treat; but in-situ coagulation-electrochemical oxidation (CO-EO) treatment is promising. We previously hypothesized and proved that substituting the widely used graphite cathode with an Al cathode will generate Al(OH)3 floccules that would enhance HAs removal in CO-EO systems. However, the fundamental mechanisms are unclear. Here, we examined this hypothesis using laboratory experiments (using an Al cathode and a Ti/Ti4O7 anode CO-EO system) and performed molecular dynamics (MD) simulation to investigate the underlying mechanisms. Up to 84.2% HAs was removed by the Al-cathode system, which is ∼10% higher than a graphite cathode-based system. Based on MD simulation we found that enhanced HAs removal occurred via two steps: (1) degradation by oxidants produced at the anode, and (2) subsequent coagulation with the Al(OH)3 generated from the Al cathode. This finding challenges the current belief that whole HAs and Al(OH)3 directly flocculate. Meanwhile, metal removal efficiency by the graphite cathode system was only 0.8–13.9%, which increased up to 13-folds at most when in the Al cathode system. This work provides new molecular-level insights into an efficient electrochemical treatment of LC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call