Abstract

Symmetrical solid oxide fuel cells (SSOFCs) with symmetrical electrodes have many desirable characteristics compared with conventional SOFCs. However, the lack of electrode materials simultaneously satisfied the high electrocatalytic activity in oxidizing and reducing atmospheres. Herein, a novel perovskite oxide electrode (PrBa)xFe1.9Nb0.1O5+δ ((PB)xFN, x = 1, 0.97, 0.95 and 0.93) was reported as a promising symmetrical electrode material for SSOFCs. XRD results reveal that the (PB)0.95FN sample has a tetragonal structure and good chemical compatibility with Gd0.1Ce0.9O2-δ electrolyte. Among all the samples, (PB)0.95FN has the lowest polarization resistance (Rp). At 800 °C, compared with primary PBFN, the cathode Rp of (PB)0.95FN is reduced from 0.109 Ω cm2 to 0.063 Ω cm2 in air, whereas the anode Rp is decreased from 0.3808 Ω cm2 to 0.3109 Ω cm2 in H2. In addition, an electrolyte-supported single cell with (PB)0.95FN symmetrical electrodes achieves a maximum peak power density at 800 °C, which is enhanced by 14.67 % compared with that of PBFN. A-site deficiency on PBFN perovskite shows better electrochemical performance, which is attributed to an increase in oxygen vacancy concentration. The results indicate that (PB)0.95FN is a potential electrode material for SSOFCs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.