Abstract

Antimony sulfide can be used as a promising anode material for lithium ion batteries due to its high theoretical specific capacity derived from sequential conversion and alloying lithium insertion reactions. However, the volume variation during the lithiation/delithiation process leads to capacity fading and cyclic instability. We report a facile, one-pot hydrothermal strategy to prepare Sb2S3 nanorods wrapped in graphene sheets that are promising anode materials for lithium ion batteries. The graphene sheets serve a dual function: as heterogeneous nucleation centers in the formation process of Sb2S3 nanorods, and as a structural buffer to accommodate the volume variation during the cycling process. The resulting composites exhibit excellent electrochemical performance with a highly reversible specific capacity of ∼910 mA h g-1, cycling at 100 mA g-1, as well as good rate capability and cyclic stability derived from their unique structural features.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.