Abstract

As one of the most promising cathode materials for next-generation of lithium-ion batteries, Li-rich Mn-based oxides are still hindered by inferior cycling properties and poor rate performance. Surface modification is proved to be feasible to tackle these problems. Herein, we chose phytic acid to construct spinel and Li 3 PO 4 double protection layers on the Li 1.2 (Ni 0.17 Co 0.07 Mn 0.56 )O 2 cathode material via a simple synchronous approach. The 3 wt% phytic acid treated sample achieves markedly enhanced electrochemical performance, such as elevated initial Coulombic efficiency reaching 90.0%, increased capacity retention of 87.8% after 150 cycles at 1 C and alleviated average discharge voltage drop of 1.63 mV per cycle. These impressive electrochemical properties can be ascribed to the designed hierarchical interface, which not only can synergistically retain structural stability but also provide fast Li + transport channels. Taken together, this work employs a facile and novel route to enhance the electrochemical performance of Li 1.2 (Ni 0.17 Co 0.07 Mn 0.56 )O 2 , which may afford inspiration to the commercialization of Li-rich cathode materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.