Abstract

Self-assembled composite porous structures comprising CuCo2O4 microflowers and NiO hexagonal nanosheets were synthesized on a conducting 3D Ni foam surface [CCO/NO] using a simple hydrothermal method. This unique composite assembly was further characterized and electrochemically evaluated as a binder-free positive electrode for hybrid supercapacitor application. The study showed that the CCO/NO exhibited a maximum areal capacitance of 1444 mF cm−2, significantly higher than the parent CuCo2O4 and NiO electrodes, with remarkable stability of 88.5% for 10,000 galvanostatic charge-discharge cycles. Key features for the enhanced electrochemical performance of CCO/NO can be related to a lowered diffusion resistance because the hybrid nanocomposite porous assembly generates short diffusion paths for electrolyte ions and more active sites for reversible faradaic transition for charge storage. The hybrid supercapacitor was assembled using activated carbon as a negative electrode and CCO/NO as a positive electrode in alkaline electrolyte, performed at an improved potential of 1.6 V. Device showed a maximum areal capacitance of 122 mF cm−2, a maximum areal energy density of 43 μWh cm−2, and a maximum areal power density of 5.1 mW cm−2. This hybrid supercapacitor showed remarkable cyclic stability up to 98% for 10,000 cycles. This study encourages the development of low-cost, high-performance, durable electrode designs using hybrid composite for next-generation energy storage systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.