Abstract

The electrochemical performance of V2O3 as an anode in lithium-ion batteries (LIBs) is quite good but it is very difficult to compete with Si/C composites. Because its intrinsic electrical conductivity and volumetric expansion during charging/discharging limit its applications as an anode in LIBs. In this study, microspherical V2O3 anode samples were prepared using a facile synthesis procedure such as the solvothermal method and heating process. Furthermore, a composite sample comprising V2O3 and carbon (V2O3/C) could be selectively prepared in the absence of ethanol washing and centrifugation. In particular, compared to a commercial V2O3 and V2O3, the V2O3/C anode exhibited enhanced electrochemical performance, i.e., rate performance (230 mAh g−1 at 1.0 A g−1, 180 mAh g−1 at 2.0 A g−1), cycling properties (508 mAh g−1 at 0.1 A g−1 for 100 cycles), and high retention (~100%).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.