Abstract

Effective treatment of 2,4-dichlorophenol (2,4-DCP) in wastewater is essential, as it could pose great threat to the environment. A hydrothermal biochar (hydrochar) was used to assist the electrochemical oxidation treatment of 2,4-DCP. The removal of 2,4-DCP using hydrochar in anode and cathode area with and without proton exchange membrane (PEM) under 3–9 V of electrolysis was investigated. Enhanced 2,4-DCP degradation in the anode area was achieved compared with the adsorption or electrolysis alone. The highest 2,4-DCP removal (∼76%) was obtained using the hydrochar in the anode area with PEM under 9 V. The mechanism for the 2,4-DCP removal during the electrolysis included adsorption by hydrochar and electrochemical degradation by the reactive oxygen species (ROS) generated by the electrode as well as the persistent free radicals (PFR) on hydrochar. The OH produced from anode was the predominant ROS contributing to the 2,4-DCP degradation under 9 V of electrolysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call