Abstract
The dearth of efficient, robust, and economical electrocatalysts for water oxidation is dubiously the key obstacle for renewable energy devices, so synthesis of efficient, and cost-effective metal-based water oxidation catalysts is vital. Herein, Co3O4, Co9S8 catalysts and their heterostructure Co3O4/Co9S8 were synthesized and evaluated as water oxidation electrocatalysts. The characterization of Co3O4, Co9S8, and Co3O4/Co9S8 electrocatalysts was performed using Fourier transform infrared spectroscopy, scanning electron microscopy and X-ray diffraction techniques. The heterostructure Co3O4/Co9S8 (1.46 V) exhibited water oxidation electrocatalysis at extremely low onset potential compared to Co3O4 (1.58 V), and Co9S8 (1.48 V) catalysts. A 281 mV overpotential required to attain a current density of 50 mA cm−2 in alkaline solution (1 M KOH), outperforming most of Co-based benchmark electrocatalysts. Further, the Co3O4/Co9S8 heterojunction demonstrated catalytic activity with small Tafel slope of 37 mV dec−1. The finding of electrochemical studies involving controlled potential electrolysis and long-term stability are projected to steer the future advancement in constructing efficient, economical, stable, and earth-abundant metal-based water oxidation catalysts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.