Abstract

Herein, we present a novel, simple, and ultrasensitive electrochemical DNA (E-DNA) sensor based on hollow carbon spheres (HCS) decorated with polyaniline (PANI). A thiolated 21-mer oligonucleotide, characteristic of HBV DNA, is immobilized via electrodeposited gold nanoparticles on HCS-PANI. Cyclic voltammetry (CV), differential pulse voltammetry (DPV), and electrochemical impedance spectroscopy (EIS) are used to characterize the electrochemical properties of the prepared nanocomposite. Scanning electron microscopy is employed to investigate the morphological texture of the fabricated modifier. An enhanced intrinsic signal of PANI is probed to evaluate the biosensing ability of the prepared modifier. The proposed biosensor allows for the detection of the target sequences of HBV DNA at a concentration as low as 10 fM (i.e., 109 DNA copies/mL). In addition, this biosensor demonstrated good capability to differentiate between the perfectly matched target oligonucleotide and three nucleotide-mismatched oligonucleotides. Furthermore, the HCS/PANI-based E-DNA sensor indicates highly sensitive detection of HBV DNA in real samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.