Abstract

Photoanode material, due to its wide applications in photoelectrochemistry, has attracted much attention. In this work, tin-doped BiOCl (BiOCl-Sn) is prepared through a simple and effective method. A photoelectrochemical cell system with BiOCl-Sn as the photoanode is constructed. The short circuit current (Jsc) and open circuit voltage (Voc) are measured to be 0.0516 mA·cm−2 and 0.26 V. Both Mott–Schottky curve and valence band spectra prove that Sn doping leads to a shift of the conduction band minimum downward. Meanwhile, the results of photocurrent and impedance measurements reveal that the Sn doping accelerates the photocarriers separation. The photocatalytic redox properties of BiOCl-Sn are investigated by rhodamine B degradation and nitrogen fixation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.