Abstract

Polycarbonate/carbon nanotube (CNT) nanocomposites were generated using a supercritical carbon dioxide (scCO2) aided melt blending method, yielding nanocomposites with enhanced electrical properties and improved dispersion while maintaining the aspect ratio of the as-received CNTs. Baytubes® C 150 P CNTs were benignly deagglomerated with scCO2 resulting in 5 fold (5X), 10X and 15X decreases in bulk density from the as-received CNTs. This was followed by melt compounding with polycarbonate to generate the CNT nanocomposites. Electrical percolation thresholds were realized at CNT loading levels as low as 0.83 wt% for composites prepared with 15X CNT using the scCO2 aided melt blending method. By comparison, a concentration of 1.5 wt% was required without scCO2 processing. Optical microscopy, transmission electron microscopy, and rheology were used to investigate the dispersion and mechanical network of CNTs in the nanocomposites. The dispersion of CNTs generally improved with scCO2 processing compared to direct melt blending, but was significantly worse than that of twin screw melt compounded nanocomposites reported in the literature. A rheologically percolated network was observed near the electrical percolation of the nanocomposites. The importance of maintaining longer carbon nanotubes during nanocomposite processing rather than focusing on dispersion alone is highlighted in the current efforts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.