Abstract
Amorphous indium tin zinc oxide (a-ITZO)/Bi2Se3 nanoplatelets (NPs) were fabricated using a two-step procedure. First, Bi2Se3 NPs were synthesized through thermal chemical vapor deposition at 600 °C on a glass substrate, and then a-ITZO was deposited on the surface of the Bi2Se3 NPs via magnetron sputtering at room-temperature. The crystal structures of the a-ITZO/Bi2Se3 NPs were determined via X-ray diffraction spectroscopy and high-resolution transmission electron microscopy. The elemental vibration modes and binding energies were measured using Raman spectroscopy and X-ray photoelectron spectroscopy. The morphologies were examined using field-emission scanning electron microscopy. The electrical properties of the a-ITZO/Bi2Se3 NPs were evaluated using Hall effect measurements. The bulk carrier concentration of a-ITZO was not affected by the heterostructure with Bi2Se3. In the case of the Bi2Se3 heterostructure, the carrier mobility and conductivity of a-ITZO were increased by 263.6% and 281.4%, respectively, whereas the resistivity of a-ITZO was reduced by 73.57%. This indicates that Bi2Se3 significantly improves the electrical properties of a-ITZO through its heterostructure, expanding its potential applications in electronic and thermoelectric devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.