Abstract

The effect of W-doping at Co-site on structural, magnetic, and transport properties in Ca3Co4−xWxO9 (0≤x≤0.4) polycrystalline samples has been studied. Based on the analysis of the structural parameter variations, the substitution is suggested to occur at Co-site in Ca2CoO3 layers. Magnetic results show that the low-temperature magnetic behavior of the series samples changes from a ferrimagnetic state of Ca3Co4O9 to a glass-like state for the W-doped samples. The result is suggested to originate from the variation of the average valence of Co ions induced by W-doping. All samples show metal-insulator transition at Tmin and Tmin increases monotonously with increasing W-doping level. The temperature range shows Fermi liquid transport behavior becomes narrower with increasing W-doping level, indicating an enhanced electron–electron correlation. Moreover, the resistivity increases and the transport mechanism changes from thermally activated model to the Mott’s variable range hoping model as W-doped into the system. The variation of the resistivity and the transport mechanism is ascribed to the increased distortion or disorder induced by W-doping.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.