Abstract

Intensive global research is focused on advanced conductive materials to meet the electrical requirements of the telecommunication and power industry. The primary aim is to enhance electrical conductivity, resulting of improved current-carrying capacity and reduced energy loss during transmission. Copper and its composites are vital for power transmission and telecommunications due to their electrical, thermal, and mechanical qualities. However, current methods have drawbacks, such as compromised conductivity with alloying. Graphene, an extraordinary carbon allotrope with exceptional properties and high conductivity, offers promising opportunities for the development of superior materials; such as graphene-incorporated copper (GrCu). The incorporation of graphene into copper wire holds significant potential for various industries, including electronics, energy transmission, and telecommunications, where high conductivity and reliability are paramount. This study investigates GrCu characteristics through mixing graphene and copper, vacuum melting, fine copper wire drawing, and GrCu coaxial cable manufacturing. Graphene infusion enhances conductivity and mechanical properties, altering microstructure and inducing twin boundaries in copper grains. Graphene's disruption during wire drawing triggers this effect, elevating wire conductivity to 103.5% by IACS. GrCu coaxial cable demonstrates performance coherence with HFSS simulation up to 6 GHz. Graphene's inclusion offers tailored material properties. Ongoing research promises further optimization and advancement of graphene-copper composites, paving the way for novel technological progress.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call