Abstract

AbstractPolymer based nanocomposites are gaining attention in various fields of science and technology due to its tunable properties. In this work, we report for the first time, the preparation and study on electrical and mechanical properties of standalone poly(vinyl alcohol) (PVA) based graphite nanoplatelet (GnP) composite films using modified film casting technique. Our modified tape casting method can produce films with uniform thickness, and uniform dispersion of filler deprived of pinholes. This technique is scalable for the mass production of polymer composite films for device application. We have obtained a significant enhancement in the electrical conductivity of 9 orders of magnitude and a maximum value of 0.143 S/m using PVA–GnP composites. To the best of our knowledge, this increase is the highest among the reported values for PVA–GnP composite films. However, a reduction in crystallinity and tensile strength can be seen with the addition of GnP fillers. The maximum tensile strength obtained for PVA–GnP composite films was 15 MPa and is adequate for use in electronic applications and devices. The effect of filler addition in PVA is discussed in detail.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.