Abstract

Noncontact direct printed conductive silver patterns with an enhanced flexural and bending strength and a proper electrical resistivity were fabricated using silver nanoplatelet inks without any surfactants for particle dispersion on a polyimide film. The microstructure, electrical resistivity, and bending strength of conductive features based on the nanoplatelets are systematically investigated and compared to nanoparticles to demonstrate superior properties. Nanoplatelets stack neatly on the substrate after noncontact direct printing, which minimizes void formation during sintering. This microstructure results in excellent resistivity on external repetitive bending stress as well as sufficiently lower electrical resistivity. It is believed to be a general conductive material to fabricate the noncontact direct printed conductive patterns with excellent mechanical stability for various flexible electronics, including solar cells, displays, RFID, and sensors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.