Abstract

We studied nonlinear magnetic anisotropy changes to the DC bias voltage of magnetic tunnel junctions (MTJs) with capping layers of different thermal resistances. We found that increasing the thickness of MgO capping layers (in the range 0.3–0.5 nm) in MTJs enhances the Joule heating-induced magnetic anisotropy change, which indicates an enhancement of the interfacial thermal resistance at the FeB|MgO capping layer interface. This enhanced interfacial thermal resistance may be attributed to roughness at the FeB|MgO interface. Moreover, we observed a larger power-driven magnetic anisotropy change of 3.21 µJ W−1m−1 in the MTJ with a composite MgO (0.3 nm)|W (2 nm)|MgO (0.4 nm) capping layer. This research supports methods of efficient spin manipulation of spintronic devices such as microwave devices and magnetic memories.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.