Abstract

We report on a method of enhanced elastic and coherent reflection of 4He2 and 4He3 from a micro-structured solid surface under grazing incidence conditions. The van der Waals bound ground-state helium clusters exhibit fundamental quantum effects: 4He2, characterized by a single ro-vibrational bound state of 10-7 eV dissociation energy, is known to be a quantum halo state; and 4He3 is the only electronic ground-state triatomic system possessing an Efimov state in addition to the ro-vibrational ground state. Classical methods to select and manipulate these clusters by interaction with a solid surface fail due to their exceedingly fragile bonds. Quantum reflection under grazing incidence conditions was demonstrated as a viable tool for elastic scattering from a solid surface but suffers from small reflection probabilities for typical conditions. Here we demonstrate that multiple-edge diffraction enables enhanced elastic scattering of the clusters from a solid. A dual-period reflection grating, where the strips consist of micro-structured edge arrays, shows an up to ten fold increased reflection probability as compared to its conventional counterpart where the strips are plane patches enabling quantum reflection of the clusters. The observed diffraction patterns of the clusters provide evidence of the coherent and elastic nature of scattering by multiple-edge diffraction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.