Abstract
The simultaneous utilization of all charge-transfer excitons and local excitons is the pathway to obtain the high efficiency fluorescent organic light-emitting diodes (FOLEDs). Here, a twisted intramolecular charge transfer state (TICT-state), a planar intramolecular charge transfer state (ICT-state), and a locally excited state (LE-state) are demonstrated to enhance the occurrence of singlet excitons in the fluorescent emitters, which are based on benzimidazole and triphenylamine donor–acceptor derivatives. The synthesis, photophysics and electroluminescent (EL) performance are studied systematically. The fluorescence emitters (TPABBBI and TPABBI) with the special TICT and ICT characteristics realize the electron–hole (e–h) recombination via intramolecular conversion from charge-transfer excitons to radiative singlet exciton. The devices based on them show high efficiency (5.1 cd/A, 5.77 lm/W, 5.66% of EQEm for TPABBBI and 3.56 cd/A, 3.11 lm/W, 4.23% for TPABBI), low efficiency roll-off at high luminance and stable blue emission.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.