Abstract

The inverted perovskite solar cells have drawn considerable attention owing to their low cost, good compatibility, and easy production processes. However, the device performance is still limited by some important factors, such as surface imperfections and interfacial nonradiative recombination losses. Here, N-acetylethylenediamine (N-AE) is introduced to bind to the surface of the perovskite film via an ammonia condensation reaction. This process creates a stable interfacial layer with n-type doping to enhance the open-circuit voltage (VOC). Moreover, during post-treatment, N-AE dissolves a portion of the perovskite on the surface, leading to perovskite recrystallization. This process enhances the surface quality of the perovskite film and reduces nonradiative recombination. As a result, the inverted perovskite solar cell exhibits a power conversion efficiency approaching 20%, with a rise in VOC from 0.96 to 1.05 V. More impressively, the unencapsulated devices display excellent stability at 85 °C annealing and retained 88% of the initial PCE for 816 h.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.