Abstract

The modulation dynamics and the linewidth enhancement factor of excited-state (ES) lasing quantum dot (QD) semiconductor lasers are investigated through a set of improved rate equation model, in which the contribution of off-resonant states to the refractive index change is taken into account. The ES laser exhibits a broader modulation response associated with a much lower chirp-to-power ratio in comparison with the ground-state (GS) lasing laser. In addition, it is found that the laser emission in ES reduces the linewidth enhancement factor of QD lasers by about 40% than that in GS. These properties make the ES lasing devices, especially InAs/InP ones emitting at 1.55 μm, more attractive for direct modulation in high-speed optical communication systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call