Abstract
Plasmonic silver nanoparticles loaded strontium titanate nanocomposites (Ag-SrTiO3 NC) with diverse weight percentages (0.5, 1.5, 2.5 and 5 wt%) of Ag nanoparticles (Ag NPs) are synthesized by a facile chemical reduction method. The prepared nanocomposites are characterized using diffuse reflectance spectroscopy, X-ray diffractometry, photoluminescence spectroscopy, scanning electronic microscopy and transmission electron microscopy. The photovoltaic performance of dye-sensitized solar cells (DSSCs) integrated with Ag-SrTiO3 NC photoanodes has been assessed under simulated sun light intensity of 100 mW cm−2. The Ag-SrTiO3 NC photoanode loaded with 2.5 wt% Ag NPs exhibited higher power conversion efficiency of 4.39% with short-circuit photocurrent density of 11.54 mA cm−2, open circuit voltage of 0.77 V and fill factor of 0.49 in DSSC. This enhanced photovoltaic performance can be credited to high dye loading, improvement in visible light harvesting - and fast photo-induced electron transfer caused by the plasmonic Ag NPs.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.