Abstract

Artificial intelligence (AI) systems are increasingly used in corporate security measures to predict the status of assets and suggest appropriate procedures. These programs are also designed to reduce repair time. One way to create an efficient system is to integrate physical repair agents with a computerized management system to develop an intelligent system. To address this, there is a need for a new technique to assist operators in interacting with a predictive system using natural language. The system also uses double neural network convolutional models to analyze device data. For fault prioritization, a technique utilizing fuzzy logic is presented. This strategy ranks the flaws based on the harm or expense they produce. However, the method's success relies on ongoing improvement in spoken language comprehension through language modification and query processing. To carry out this technique, a conversation-driven design is necessary. This type of learning relies on actual experiences with the assistants to provide efficient learning data for language and interaction models. These models can be trained to have more natural conversations. To improve accuracy, academics should construct and maintain publicly usable training sets to update word vectors. We proposed the model dataset (DS) with the Adam (AD) optimizer, Ridge Regression (RR) and Feature Mapping (FP). Our proposed algorithm has been coined with an appropriate acronym DSADRRFP. The same proposed approach aims to leverage each component's benefits to enhance the predictive model's overall performance and precision. This ensures the model is up-to-date and accurate. In conclusion, an AI system integrated with physical repair agents is a useful tool in corporate security measures. However, it needs to be refined to extract data from the operating system and to interact with users in a natural language. The system also needs to be constantly updated to improve accuracy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.