Abstract
Cardiac screening of newly discovered drugs remains a longstanding challenge for the pharmaceutical industry. While therapeutic efficacy and cardiotoxicity are evaluated through preclinical biochemical and animal testing, 90 % of lead compounds fail to meet safety and efficacy benchmarks during human clinical trials. A preclinical model more representative of the human cardiac response is needed; heart tissue engineered from human pluripotent stem cell derived cardiomyocytes offers such a platform. In this study, three functionally distinct and independently validated engineered cardiac tissue assays are exposed to increasing concentrations of known compounds representing 5 classes of mechanistic action, creating a robust electrophysiology and contractility dataset. Combining results from six individual models, the resulting ensemble algorithm can classify the mechanistic action of unknown compounds with 86.2 % predictive accuracy. This outperforms single-assay models and offers a strategy to enhance future clinical trial success aligned with the recent FDA Modernization Act 2.0.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.