Abstract

<p>This paper presents an enhanced real-time vehicle detection system using convolutional neural networks (CNNs) for both daytime and night-time conditions. Initially, the system determines the time of capture by analyzing the upper part of input images. For daytime detection, it uses normalized cross-correlation and two-dimensional discrete wavelet transform (2D-DWT) techniques. Night-time detection involves identifying vehicle lamps through color thresholding and connected component techniques, followed by symmetry analysis and CNN classification. The dataset for training includes images from the Caltech Cars, AOLP, KITTI Vision, and night-time vehicle detection datasets, ensuring robust performance across various lighting conditions. Experiments demonstrate the system's high accuracy, achieving 99.2% during the day and 98.27% at night, meeting real-time requirements and enhancing driving assistance systems' reliability.</p>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.