Abstract

We present a combined experimental and numerical investigation of a sphere settling in a linearly stratified fluid at small Reynolds numbers. Using time-lapse photography and numerical modelling, we observed and quantified an increase in drag due to stratification. For a salt stratification, the normalized added drag coefficient scales as Ri0.51, where Ri = a3N2/(νU) is the viscous Richardson number, a the particle radius, U its speed, ν the kinematic fluid viscosity and N the buoyancy frequency. Microscale synthetic schlieren revealed that a settling sphere draws lighter fluid downwards, resulting in a density wake extending tens of particle radii. Analysis of the flow and density fields shows that the added drag results from the buoyancy of the fluid in a region of size (ν/N)1/2 surrounding the sphere, while the bulk of the wake does not influence drag. A scaling argument is provided to rationalize the observations. The enhanced drag can increase settling times in natural aquatic environments, affecting retention of particles at density interfaces and vertical fluxes of organic matter.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.