Abstract

Nanoparticle-based drug delivery reveals the safety and effectiveness and avoids premature drug release from the nanocarrier. These nanoparticles improve the bioavailability and stability of the drug against chemical and enzymatic degradation and facilitate targeted drug delivery. Herein, targeted folic acid-conjugated oxidized mesoporous carbon nanospheres (Ox-MPCNPs) were successfully fabricated and developed as antitumoral doxorubicin delivery for targeted breast cancer therapy. Fourier transform infrared spectroscopy studies confirmed that the doxorubicin was successfully bound on the Ox-MPCNP through hydrogen bonding and π–π interactions. X-ray diffraction studies showed that the synthesized doxorubicin-loaded Ox-MPCNP is semi-crystalline. The surface morphology of the synthesized doxorubicin-loaded Ox-MPCNP (DOX/Ox-MPCNP-Cys-PAsp-FA) was studied by scanning electron microscopy and high-resolution transmission electron microscopy, which demonstrates a sphere-shaped morphology. The cytotoxic effects of DOX/Ox-MPCNP-Cys-PAsp-FA were studied in MCF-7 breast cancer cells using the CytoTox96 assay kit. The study confirmed the cytotoxic effects of the synthesized nanospheres in vitro. Moreover, DOX/Ox-MPCNP-Cys-PAsp-FA-treated cells displayed efficient cell apoptosis and cell death in flow cytometry analysis. The mitochondrial fragmentation and nucleus damages were further confirmed by fluorescence microscopy. Thus, the approach used to construct the DOX/Ox-MPCNP-Cys-PAsp-FA carrier provides excellent opportunities for the targeted treatment of breast cancer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.