Abstract

Diet is a major source of human exposure to polycyclic aromatic hydrocarbons (PAHs), of which benzo[a]pyrene (BaP) is the most commonly studied and measured. BaP has been considered to exert its genotoxic effects after metabolic activation by cytochrome P450 (CYP) enzymes whose activity can be modulated by cytochrome P450 oxidoreductase (POR), the electron donor to CYP enzymes. Previous studies showed that BaP-DNA adduct formation was greater in the livers of Hepatic Reductase Null (HRN) mice, in which POR is deleted specifically in hepatocytes, than in wild-type (WT) mice. In the present study we used human hepatoma HepG2 cells carrying a knockout (KO) in the POR gene as a human in vitro model that can mimic the HRN mouse model. Treatment to BaP for up to 48 h caused similar cytotoxicity in POR KO and WT HepG2 cells. However, levels of BaP activation (i.e. BaP-7,8-dihydrodiol formation) were higher in POR KO HepG2 cells than in WT HepG2 cells after 48 h. This also resulted in substantially higher BaP-DNA adduct formation in POR KO HepG2 cells indicating that BaP metabolism is delayed in POR KO HepG2 cells thereby prolonging the effective exposure of cells to unmetabolized BaP. As was seen in the HRN mouse model, these results suggest that cytochrome b5, another component of the mixed-function oxidase system, which can also serve as electron donor to CYP enzymes along with NADH:cytochrome b5 redutase, contributes to the bioactivation of BaP in POR KO HepG2 cells. Collectively, these findings indicate that CYPs play a more important role in BaP detoxication as opposed to activation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call