Abstract

Identification of different partial discharge (PD) sources may be improved by the use of non-sinusoidal waveforms of the testing voltages. For instance, surface discharge (SD) and cavity discharge (CD) are not always easy to directly distinguish from the phase resolved PD pattern at traditional 50 or 60 Hz alternating sinusoidal voltage. This study compares PD patterns stimulated by sinusoidal voltage and by several forms of trapezoid-wave voltage, including the limiting cases of triangular and approximately square-wave voltages. Trapezoid-based voltage waveforms are considered as a potential new off-line diagnostic method for PD sources. Partial discharge measurements were performed with each different waveform in two test cells representing canonical cases of SD and CD, with polycarbonate plates as the solid insulating material. The results show that the applied voltage of arbitrary waveform could more clearly distinguish between these PD sources� behavior than normal sinusoidal voltage. The constant-voltage period of peak value in trapezoidal and square voltage waveforms played an important role in the distinction of the two discharge sources. Compared with the cavity discharge�s symmetric features, surface discharge produced in the asymmetric test cell shows strong asymmetric behavior during the constant-voltage period between two polarities under trapezoidal and square voltage waveforms. A faster rise time and increased duration of the constant peak-voltage part of the waveform caused more obvious asymmetry of the surface discharge.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.